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CHAPTER 6 

Nonequilibrium Steady States 

 

“The number of molecules being finite, it is clear that small finite deviations 

from absolute precision in the reversal we have supposed would not obviate 

the resulting disequalisation of the distribution of energy. But the greater the 

number of molecules, the shorter will be the time during which the 

disequalising will continue; and it is only when we regard the number of 

molecules as practically infinite that we can regard spontaneous 

disequalisation as practically impossible1.” William Thomson, Nature, April 9, 

1874, pp. 441-444. 

 
6.1 THE PHYSICALLY ERGODIC NONEQUILIBRIUM STEADY 
STATE 

 
Definition 

 A nonequilibrium system is stationary if it is subject to a thermostatting 

mechanism and a dissipative field such that for smooth phase functions  B(Γ)   

 

	
  
 
lim
τ→∞

lim
t→∞

ds
0

τ

∫
B(St+sΓ)

τ
= const(Γ), ∀Γ∈D . (6.1.1)  

	
  

                                                
1 In modern terminology, Thomson is saying that, other things being equal, the largest 
Lyapunov exponent increases with the number of particles, so that its reciprocal (the 
reversal time) becomes microscopic for macroscopic systems. 
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Stationarity simply means that such systems have time independent averages for 

physical properties at sufficiently long times. The time independent value that these 

time averages take on could be dependent on the initial phase,  Γ .  

 

Definition 

 A physically ergodic nonequilibrium steady state (peNESS) satisfies the 

equation: 

 

	
  
 
lim
τ→∞

lim
t→∞

ds
0

τ

∫
B(St+sΓ)

τ
= lim

t→∞
B(StΓ

0
= const ∀Γ∈D 	
  	
   (6.1.2) 

	
  

where the subscript zero on the ensemble average denotes an ensemble average over 

the initial time zero ensemble,  f (Γ;0)  and  B(Γ)  is a smooth phase function. D 

denotes the ostensible phase space domain over which the initial ensemble density is 

nonzero. For almost initial phase  Γ , the time average on the left hand side of (6.1.2) 

equals the right hand late-time ensemble average taken with respect to the initial 

distribution  f (Γ;0)  in D. At late times we say that the steady state is ergodic with 

respect to ensemble averages of physical properties, over the initial distribution, D. 

 When we speak of physical ergodicity, we say that almost any initial phase 

leads, at long times, to time averages that are equal to the long time, ensemble average 

because there are sets of initial phase points, whose measure is zero, but for which the 

long  time, averaged properties are very different from the properties of the steady 

state.   
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 Consider almost any  Γ∈D  if we form the time reversal mapping of the set of 

late-time phase vectors,  StΓ , then the set of phases  {M
TStΓ}  has very strange 

properties. Advancing time for a short while τ << t  generates antisteady state 

properties. They are overwhelmingly likely to convert heat into work. However for 

sufficiently large t the probability of observing these “repeller” phases becomes 

incredibly small – going to zero in the limit t→∞ . 

 Equation (6.1.2) implies that the long time averages could be averaged over 

almost any initial distribution of those initial phases  f (Γ;0)  so that for a NESS,  

 

 
lim
t→∞

B(StΓ
0
= lim

t→∞
dΓ

Γ∈D
∫ B(StΓ) f (Γ;0) = lim

t→∞
B(StΓ ∀f (Γ;0),∀Γ∈D 	
   (6.1.3) 

 

 Equation (6.1.3) shows that physically ergodic nonequilibrium steady states 

are physically ergodic with respect to almost any initial distribution of phases, 

 f (Γ;0)  in the phase space domain D. Time averages of physical variables are equal to 

ensemble averages and in the nonequilibrium steady state the late-time ensemble 

average is independent of the initial distribution. This coincides with the 

commonplace observation that for example in shearing laminar flows with fixed 

boundary conditions of shear rate, boundary temperatures and pressure etc, the 

nonequilibrium steady state so produced is, at long times, independent of the details 

of the initial state from which it was produced and a single long time, time average 

will give the same result for a physical measurement that we would obtain from a 

late-time ensemble average of repeated experiments. 

 Later in this chapter we will examine in more detail the mathematical 

conditions that are required in order to generate a physically ergodic nonequilibrium 

steady state. 
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 While our physical experience is that physically ergodic NESS do exist, we 

also know from experience that this is not always the case. For example in Rayleigh-

Bernard instability we know that for a fixed geometry and set of boundary conditions 

systems my form into 2 rolls or 4 rolls etc with these number of rolls fixed and 

persisting indefinitely. Clearly the physical properties on the 2-roll system are 

different from those of a 4-roll system. These types of system do not satisfy (6.1.2) 

(.ie. they do not form a nonequilibrium steady state). 

 If we could define the phase space subdomain D2  over which only 2 rolls 

form at late times, then over the subdomain D2 , the system would form a 

nonequilibrium steady state, while over D it would not. However in such cases it may 

be practically impossible to actually discover the topology of this phase space 

subdomain D2 . If this is the case then from a practical point of view such systems are 

best viewed as not forming a NESS. 
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6.2 ENTROPY AND ENTROPY PRODUCTION IN NONEQUILIBRIUM 

STEADY STATES 

  
 In §2.6 we showed that the time derivative of the Gibbs entropy for 

autonomous Hamiltonian systems satisfies the equation  !SG (t) = 0  and for driven 

nonequilibrium isokinetic, steady state systems even far from equilibrium – see 

(2.6.2), 

 

	
  

 

!SG (t) = −(DC (NW −1)−1)kB α (t)

= kB Λ(t) t→∞⎯ →⎯⎯ const < 0
.	
   (6.2.2) 

	
  

In (6.2.2) DC  is the number of Cartesian dimensions NW  is the number of 

isokinetically thermostatted wall particles and we assume that 3 Cartesian components 

of linear momentum are also conserved. The fact that the average value of the 

thermostat multiplier becomes constant follows from the Dissipation Theorem and the 

assumption of T-mixing. The fact that this constant is negative comes from applying 

the Second Law Inequality. At the late times ensemble average of the Gibbs entropy 

is not constant but rather decreases at a constant rate towards negative infinity!  

 From our knowledge of thermostats we know that for nonequilibrium steady 

states (NESS) 

 

 
 
lim
t→∞
!SG (t) = − lim

t→∞

!Qth (t) ss

T
  (6.2.3) 
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 This equation is obtained by noting that  !H0 (t) = −2Kth (t)α (t) = −2Kthα (t) = −Qth (t)  

for isokinetically thermostatted systems.  

 This equation is exactly what one would expect from applying classical 

thermodynamics to a quasistatic system in which case 2Kth = (DC (NW −1)−1)kBT  

and T is the equilibrium thermodynamic temperature. However (6.2.3) is valid even 

far from equilibrium in which case T can be taken to be the underlying equilibrium 

temperature, the entire system would relax to, should the dissipative field be removed 

from the system at time t, and it be allowed to relax to that equilibrium. In the latter 

case the reservoir need not be large nor at equilibrium.  

 If the reservoir is sufficiently large (to be regarded as being quasistatic then 

the right hand side is exactly the negative of the rate of change of entropy for the 

thermostat so we discover in this case: 

 

	
  
 
lim
t→∞
[ !SG (t)+ !Sth (t)]= 0 	
   (6.2.3) 

	
  

This equation shows that the time derivative of the Gibbs entropy of the system of 

interest (defined using phase space distributions) does equate in magnitude to the 

macroscopic calorimetric entropy change in the thermostat.  

 If we define the “universe” to be the union of the system of interest and the 

thermostat, equation (6.2.3) shows that the entropy of the universe does not increase 

but rather the entropy of the “universe” is simply constant. This is related to the 

constancy of the Gibbs entropy in autonomous Hamiltonian (i.e. unthermostatted) 

systems.   
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 In a NESS the distribution function collapses onto a zero volume strange 

attractor. In most of the phase space, D, the density goes to zero whereas from almost 

any initial phase in this phase space the density at the streamed phase becomes 

infinite, 
 
lim
t→∞

f (StΓ;t)→ +∞ . The Gibbs entropy can be decomposed into components 

where the phase space density (defined with respect to the ostensible phase space 

domain) either goes to zero or diverges to negative infinity, lim
t→∞

SG (t)→−∞  [3]. The 

logarithm appearing in Gibbs definition of the entropy is a singular function. The 

Gibbs entropy can only yield satisfactory values if the distribution function is smooth 

– as it is at equilibrium. It is only for equilibrium systems that the dimension of the 

space preserved by the dynamics, is known with any accuracy. In a NESS the 

distribution function defined over the ostensible phase space is singular and the Gibbs 

entropy is of little use. 

 In the Appendix we illustrate the relationship between the dissipation, 

thermodynamic entropy and Gibbs entropy for a simple model system.   The system is 

thermostatted and initially in a canonical equilibrium state.  Its temperature is 

decreased then increased back to the initial state via a nonequilibrium pathway, and 

finally allowed to relax back to equilibrium.  Calculation of the change in the Gibbs 

entropy throughout this process indicates that the Gibbs entropy will decrease towards 

−∞  as the system approaches equilibrium. The phase space probability distribution 

will become a fractal with dimension less than that of the ostensible phase space.  

However the equilibrium entropy of the state that is approached in the long time limit 

will be the same as that of the initial state.  The physical properties determined using 

the evolved distribution will become indistinguishable from those of the true 

equilibrium state, but the fine-grained density will always differ.  This demonstrates 
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that the Gibbs entropy does not describe the physical properties of the system, but 

rather gives a description of the underlying phase space density. 
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6.3 DISSIPATION IN NONEQUILIBRIUM STEADY STATES (NESSs) 

 

 We will now discuss nonequilibrium steady states in terms of dissipation 

rather than entropy or so-called entropy production. We begin by considering a 

system of N particles subject to the following equations of motion [20]:  

 

	
    qi = pi /m +CiFe, pi = Fi + DiFe − Siα IKpi + SiFth 	
   (6.3.1) 

	
  
 In these equations Fe  is an external dissipative field (e.g. an electric field 

applied to a molten salt), the scalars Ci  and Di  couple the system to the field. The 

system can easily be generalized to tensor coupling parameters if required.  If we 

denote a set of thermostatted particles as belonging to the set th, we choose 

Si = 0, i ∉th; = 1,i ∈th  is a switch to determine whether particle i is a member of the 

set, th, of Nth  thermostatted particles. α IK  is the thermostat multiplier [20] chosen to 

fix the kinetic energy of the thermostatted particles at the value Kth  and Fth  is a 

fluctuating force to fix the total momentum of the thermostatted particles, which is 

selected to have a value of zero. We assume the interatomic forces Fi; i = 1,N  are 

smooth functions of the interparticle separation. We also assume that the interatomic 

forces are short ranged so that there are no convergence problems in the large N limit. 

 We assume that in the absence of the thermostatting and momentum zeroing 

forces, the equations of motion preserve phase space volumes (
  
∂
∂Γ i Γad ≡ Λ(Γ) = 0 ) 

where  Γ ≡ (q1,...pN )  is the phase space vector and ad denotes the fact that the time 

derivative is calculated with the thermostatting and momentum zeroing forces turned 
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off. This condition is known as the adiabatic incompressibility of phase space 

condition or AI Γ  for short. [20] 

 We assume the system of particles is subject to infinite checkerboard 

boundary conditions [20] – at least in the direction of the force. This means that 

angular momentum is not a constant of the motion. It also means that dissipation can 

go on forever without the system relaxing to equilibrium. Currents can flow in the 

direction of the force forever. The thermostatted particles may be taken to form solid 

walls parallel to the field, so that they can absorb or liberate heat that may be required 

to generate a NESS characterized by a fixed value for the kinetic energy of the 

thermostatted particles.  

 In contrast, if the system is finite, mixing, and has an autonomous 

Hamiltonian, even when subject to a dissipative external force, it will eventually relax 

towards microcanonical equilibrium [§5.3]. If these same systems are thermostatted as 

in (6.3.1) above, they will eventually relax towards canonical equilibrium [§5.4]. For 

example a finite cell containing charged particles subject to a fixed external field, 

whether thermostatted or not, will eventually, after dissipative transients, relax 

towards equilibrium. The charges will be separated by the external field and 

eventually produce an internal field (space charge) that cancels the externally applied 

field. 

 However, although NESSs which persist for an infinite amount of time do 

not exist in Nature, on accessible timescales they can be approached arbitrarily 

closely by a judicious choice of large but finite heat reservoirs and managing the 

magnitude of dissipation in relation to the size of those reservoirs and the 

nonequilibrium system of interest. If the time taken to relax towards equilibrium is 

much longer than the time taken to relax towards a (transient) nonequilibrium 



 11 

“steady” state, averages of smooth phases functions in those transient dissipative 

states can be approximated as stationary averages. 

 In the present chapter we consider only those particles that are initially 

located in the unit cell at time zero. The equations of motion given in (6.3.1), now do 

not need to refer to the periodic boundaries or re-imaging processes because we 

follow the coordinates on this initial set of particles indefinitely no matter how far 

they may diffuse or stream from the initial unit cell. No matter where one of the 

original particles is located at later times, the force on that particle due to any one of 

the infinite periodic array of other particles close enough to exert a force on this 

original particle is computed correctly. This is done by exploiting the infinite 

checkerboard convention. At long times the nearest neighbours of one of the original 

unit cell particles are not necessary members of the original unit cell. This is the so-

called infinite checkerboard convention commonly used in molecular dynamics and 

Monte-Carlo computer simulation [20]. 

 The initial distribution is taken to be the equilibrium distribution for this 

system (see below). It takes the form of a canonical phase space distribution function, 

 fc(Γ) , augmented with the necessary delta functions (5.3.4): 

 

 
 
f (Γ,0) = fc(Γ) =

exp[−βthH0 (Γ)]δ (Pth )δ (Kth (Γ)− Kβ ,th )
dΓ∫ exp[−βthH0 (Γ)]δ (Pth )δ (Kth (Γ)− Kβ ,th )

,  (6.3.2) 

 

where Pth = Sipi
i=1

N

∑  is the total momentum of the thermostatted particles and 

 
Kth (Γ) = Kth (p) = Si pi

2 / 2mi∑  is the kinetic energy of the thermostatted particles 
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andKβ ,th = (3Nth − 4)βth
−1 / 2  (we assume the system has 3 Cartesian dimensions) is the 

fixed value of the kinetic energy of the thermostatted particles.  The number of 

particles in a unit cell is N . The kinetic energy of the thermostatted particles is fixed 

using the Gaussian multiplier α IK  in the equations of motion. Here βth = 1/ kBTth  

where kB  is Boltzmann’s constant and for isokinetic systems Tth  is the so-called 

kinetic temperature  of the thermostatted particles. For Nosé-Hoover thermostatted 

systems [20] it is the reciprocal of the target temperature of the Nosé-Hoover 

feedback mechanism. In the Nosé-Hoover thermostatted case there is an O(1)  change 

in the equipartition relation between the thermostat kinetic energy and the kinetic 

temperature of the thermostat [4, 20].  The (only) common feature of all thermostatted 

systems is that βth is the reciprocal of the equilibrium thermodynamic temperature that 

the entire driven system would relax towards, if the system is T-mixing (5.3.2), the 

driving force is set to zero and the whole system is allowed time to relax towards 

thermodynamic equilibrium [§5].  We call this temperature, the equilibrium 

thermodynamic temperature of the underlying equilibrium state. The internal energy 

of the N-particles in the unit cell is the average of  H0 (Γ) = K(p)+Φ(q)  where K ,Φ  

are respectively the peculiar kinetic energy and the potential energy of all the particles 

in the original unit cell.  

 To be more mathematically correct we should specify the ostensible phase 

space domain that is not referred to explicitly in (6.3.2). In principle the particle 

momenta are unbounded. Clearly the delta functions in (6.3.2) place 4 constraints on 

the momenta of (some) particles in the system. The initial coordinates of the particles 

will each range over some finite range ±L  within the unit cell of the periodic system. 

Because of the infinite periodicity, any particle and its environment are identical to 

any periodic image of that particle. Particles can always be “re-imaged” back into the 
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original unit cell [20]. However calculating certain quantities may have spurious 

discontinuities if this is done. Thermodynamic quantities like pressure, internal energy 

etc. are all continuous in time, independent of whether particles are “imaged” in the 

unit cell. Throughout most of the remainder of this paper we will not refer explicitly 

to this ostensible phase space domain.  

 The thermostatting region that is unnatural can be made arbitrarily remote 

from the natural system of interest. The thermostatting particles may be buried far 

inside realistic walls that contain the nonequilibrium system of interest. This means 

that there is no way that the particles in the system of interest can “know” how heat is 

ultimately being removed from the system. The thermostats are important as a 

bookkeeping device to track the evolution of phase space volume in a deterministic 

but open system. 

 The time integral of the dissipation function evaluated at an initial phase,  Γ , 

is formally defined as7  

  

	
  

 

Ωt (Γ) ≡ ln
f (Γ;0)exp − ds

0

t

∫ Λ(SsΓ)( )
f (MTStΓ;0)

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
	
   (6.3.3) 

	
  
where MT  is the time reversal map,  M

TΓ ≡ (q1,...qN ,−p1,...,−pN )  and St  is the time 

evolution operator for a time t.  A key point in the definition of dissipation is that 

 Γ and M
TStΓ  are the origin phases for a trajectory and its conjugate antitrajectory 

respectively. This places constraints on the propagator, St . Any time dependent 

driving fields, Fe(t) , must have a definite parity under time reversal over the interval 

(0,t) .  
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 For a system satisfying (6.3.1) and satisfying the AI Γ  condition and having 

an initially equilibrium distribution of states (6.3.2), it is easy to show that the 

instantaneous dissipation function (6.3.3) can be written as, 

 

 
 
Ω(Γ) ≡ −βthJ(Γ)VFe = βth [piDi /m − FiCi

i
∑ ] iFe  (6.3.4) 

 

where  J(Γ)  is the so-called dissipative flux and V  is the unit cell volume. For 

example, for electrical conductivity where Ci = 0,∀i  and Di = ci  is the electric 

charge of particle i, and an electric field is applied in the x-direction, Fe = (Fe,0,0) , it 

is easy to see that 
 
−JV = ci xi∑ , the electric current in the x-direction.  

 Such a dissipation function is called a primary dissipation function - §4.3. 

When the field is zero the system remains in equilibrium and there is no dissipation. 

 From the Dissipation Theorem8 [§4] we know that if the system is initially at 

equilibrium, we can write the nonlinear response of an arbitrary integrable phase 

function  B(Γ)  as 

 

 
 
B(t) Fe ,0

= B(0) 0 − βthV ds J(0)B(s)
0

t

∫ Fe ,0
iFe  (6.3.5) 

 

where B(t) Fe ,0
 denotes the ensemble average of the phase function  B(Γ)  evaluated 

at the propagated phase  StΓ  with the initial distribution ( t = 0 ) being given by 

(6.3.2). The first subscript on the ensemble averages Fe , indicates that the propagator 
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St  is given by the full field-dependent, thermostatted dynamics of equations (6.3.1), 

and the second subscript which is zero in this case, indicates that the average is with 

respect to initial, equilibrium distribution function. In (6.3.5)  B(s) ≡ B(S
sΓ)  is also 

evaluated with the full field-dependent, thermostatted dynamics. 

 From (6.3.5) we also see that if the driving field is zero then the ensemble 

averages of all integrable phase functions are time independent and thus if the system 

starts with the equilibrium distribution (6.3.2) the distribution is preserved by the field 

free, thermostatted dynamics. 

 Although (6.3.5) only refers directly to the N particles in the unit cell, the 

coordinates and momenta of all periodic image particles follow by symmetry. 

 This expression (6.3.5) is exact, arbitrarily near or far from equilibrium and 

also for systems of arbitrary size. If the system is T-mixing, then by definition (5.3.2) 

if  B(Γ)  is a sufficiently smooth, real valued phase function, 

 

	
   lim
t→∞

B(t) Fe ,0
= L0 ∈R .

	
   (6.3.6) 

	
  

So the infinite time-integral of the transient time correlation function in (6.3.5) 

converges to a finite value for an arbitrarily strong, or weak, dissipative field. 

Physically this corresponds to the relaxation to a nonequilibrium steady state (NESS) 

at sufficiently long times. The T-mixing property also means that the steady state 

distribution is physically ergodic and does not break down into non-mixing subspaces 

that have different values for the steady state averages of smooth phase functions.  
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 If the phase space did break down into subdomains with distinct, time 

invariant sets of averages of these smooth phase functions, these distinct values could 

be used to define new constants of the motion. These constants of the motion would 

lead to nonconvergent integrals for the relevant time correlation functions with the 

zero time dissipation (6.3.5) and thereby violate the T-mixing assumption. Any initial 

correlations between the dissipation function and the phase variables which are 

constants of the motion, would be preserved for all time resulting in divergences in 

(6.3.5) and (6.3.6).  

 [As in §4.3 we expressly exclude the case where the system possesses 

constants of the motion but the TTCF appearing in (6.3.5) vanishes for all times 

because of perfect cancelation. Unlike the case for quantum systems, in real classical 

systems there can never be perfect cancellation. For example, consider a system that 

splits its phase space into two perfectly symmetrical domains and suppose that once in 

either of these domains the system stays in the particular domain forever. Suppose 

also that the dissipation function at time zero is perfectly uncorrelated with the 

domain occupation. Such a system will possess constants of the motion but the TTCF 

of Ω(0)  with  S(S
tΓ) = +1,StΓ∈D1;= −1,StΓ∈D2  namely  Ω(0)S

tΓ = 0,∀t . If the 

lack of correlation is not exact or the average  S(Γ)  is not exactly zero  the TTCF 

integral will diverge and the system cannot be T-mixing. Such perfect symmetries do 

not exist in real classical systems. There will always be some perhaps small physical 

imperfection that breaks the perfect symmetry.] 

 Thus steady state time averages must equal ensemble averages over the 

steady state attractor even though its topology is fractal and its geometry is generally 

unknown. So the T-mixing condition implies the late-time stationary nonequilibrium 
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states are in fact Nonequilibrium Steady States (NESS) that are physically ergodic 

over the initial phase space domain. 

 We do know that the dimension of the steady state attractor is less than that 

of the ostensible phase space and generally decreases as the dissipation increases (NB 

it is not known whether the Kaplan-Yorke dimension is in general a monotonic 

decreasing function of the dissipative field. In the weak field, linear response regime 

the Kaplan-Yorke dimension is a monotonic decreasing function of the dissipative 

field6.).  

 Although the long time averages appearing on the left hand side of (6.3.5,6) 

are finite, these averages could be divergent in the limit of large system sizes. For 

finite dissipative fields the large system limit is usually problematic. For example for 

a fixed shear rate in say Couette flow, as the system size increases so does the 

Reynolds Number for the flow. As the system size increases we know that there will 

be a transition from laminar to (eventually) highly turbulent flow. Such large systems 

(e.g. Raleigh-Bernard flows) may not be T-mixing. 

 In the weak field limit this equation (6.3.5) reduces (essentially) to the well-

known Green-Kubo expression4 for the linear response  

 

 
lim
Fe→0

B(t) Fe ,0
= B(0) Fe=0,0

− βthV ds
0

t

∫ J(0)B(s)] Fe=0,0
iFe ,	
   (6.3.7) 

	
  

where the right hand side is given by the integral of an equilibrium (i.e. Fe = 0 ) time 

correlation function.  The initial ensemble for the terms on the right hand side is the 

equilibrium ensemble (6.3.2), and the dynamics inherent in the equilibrium time 

correlation function is generated at zero field but with the thermostat on. The field 
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only appears in the nonequilibrium average on the left hand side of (6.3.7) and as an 

explicit factor multiplying the correlation function on the right hand side of (6.3.7). 

 In the linear response regime the T-mixing condition implies that 

lim
t→∞

J(0)B(t) fc
= 0 , i.e. there is no correlation between J(0)  and lim

t→∞
B(t)  so that 

lim
t→∞

J(0)B(t) fc
= J(0) fc

B fc
= 0  and the zero field system is mixing. If 

correlations were non-zero in the long time limit the integral (6.3.7) could not 

converge and the system would not be T-mixing. The mixing condition assumes that 

(5.2.1), 

 

	
  
 
lim
t→∞

A(Γ(0))B(Γ(t))] fc (Γ)
− A(Γ) fc (Γ)

B(Γ) fc (Γ)
= 0 	
   (6.3.8) 

 

where  fc(Γ)  is the equilibrium distribution (6.3.2). In equation (6.3.5) the T-mixing 

condition for the equilibrium time correlation function implies the system is mixing 

over the invariant equilibrium distribution (6.3.2).  

 However mixing does not imply T-mixing. In a T-mixing system the 

correlation function must go to zero sufficiently rapidly for the integral to converge so 

that, 
 
lim
t→∞

B(Γ(t)) Fe ,0
 is time independent and finite. Having equilibrium time 

correlation functions going to zero at long times is insufficient to ensure T-mixing. 

 If the decorrelations in the equilibrium time correlation function scale like 

1/ t  or slower at long times, the system will be mixing but not T-mixing. For example 

if the equilibrium time correlation function goes to zero as 1/t at long times, 

lim
t→∞
lim
Fe→0

B(t) Fe
− B(0)  =O(ln(t))  and the system will never have a time independent 
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average value for the phase variable even arbitrarily close to equilibrium. Thus we 

have an example system that is mixing over the equilibrium time correlation function 

but does not relax to nonequilibrium steady states in the linear response regime close 

to equilibrium. This is quite different to the ergodic theory result for finite 

autonomous Hamiltonian systems where mixing does indeed imply relaxation towards 

the time independent microcanonical equilibrium distribution! 

 To put this into a more physical context, in two dimensions in the large 

system limit (i.e. the number of particles in the unit cell, N, goes to infinity), 

equilibrium time correlation functions for the macroscopic Navier-Stokes transport 

coefficients are each thought to have t −1  long time tails. In this limit, the Fourier 

series in our infinitely periodic system become continuous Fourier transforms. Thus 

macroscopic equilibrium systems in two dimensions may be mixing but would not be 

T-mixing. Again this does not violate the ergodic theory proof of relaxation to 

microcanonical equilibrium because that proof only applies to finite systems. 

 If we turn briefly to the transient time correlation function expressions for 

the nonlinear response (6.3.5), the mixing condition is simply not relevant. The 

transient time correlation function on the right hand side is not stationary. The 

measure evolves from the initial equilibrium distribution (6.3.2) and through a set of 

transient measures (over which the transient integral is computed) till at long times, if 

the system is T-mixing we have a steady state with stationary averages for physical 

observables. The mixing condition (6.3.8) can never prove relaxation to a steady state 

because the condition already assumes in its definition (6.3.8), stationarity with 

respect to time! 

 We say that equation (6.3.7) is essentially the same as the Green-Kubo10,11 

relations because there are some subtle differences. Kubo’s results were for the 
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linearized adiabatic response (i.e. no thermostats) of a canonical ensemble of systems. 

We derived equation (6.3.7) for isokinetic dynamics where the kinetic energy of the 

thermostatted particles is fixed and the distribution for the system of interest is 

canonical – equation (6.3.2).  Thus the equilibrium time correlation function 

appearing in (6.3.7) is for field free isokinetic dynamics. This is not the same as the 

case considered by Kubo10.  Kubo’s time correlation functions involved canonical 

distributions but field free, constant energy, Newtonian trajectories. Kubo’s system 

was obviously not ergodic (because states of different energies never mix) whereas 

our results (6.3.7) are ergodic (because the system is T-mixing).  

 Evans and Sarman have proved12 that to leading order in the number of 

degrees of freedom in the system (=O(N ) ), adiabatic and thermostatted equilibrium 

correlation functions are identical.  Of course if the dissipative field only couples to 

particles in the system of interest and the thermostat region is large and remote, the 

fluctuations in the dissipation function (which is local to the system of interest) will 

hardly be affected by the presence or absence of thermostatting terms in the large 

remote thermostatting region.  

 Because the thermostat is unphysical, we only thermostat a small subset of 

particles. If we only thermostat a small number of particles that are remote from the 

natural system of interest (still within the unit cell), we can always appeal to the 

gedanken experiment that if we make the thermostatting region ever more remote 

from the system of interest there is just no way that the physical system of interest can 

“know” how the remote thermostatting is actually occurring. If the external fields are 

set to zero and the T-mixing system is allowed to relax to equilibrium we know the 

thermodynamic temperature of that underlying equilibrium system. That is the 

temperature that appears in the equations given above. 
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 In fact Evans and Sarman also proved that at the same state point, transient 

time correlation functions computed for homogeneously isokinetic, isoenergetic or 

Nosé-Hoover, dynamics are identical to leading order in N. To define a common state 

point they fixed N, V, Fe  and the average steady state dissipation. So even the 

nonlinear response is robust with respect to thermostatting mechanism. 

 There is yet another interesting observation we can make regarding 

Kubo’s10,11 system. If you consider viscous flow in a dilute gas then as is known from 

kinetic theory, the viscosity of a gas increases with temperature. This means that for 

any finite field, no matter how small, the shear stress of an adiabatic shearing gas 

must increase with time. This means that a shearing unthermostatted gas can never be 

T-mixing! In a physical sense for such a system, time correlations never decay – at 

least not rapidly enough for T-mixing.  

 You can see how this memory effect occurs. If among the initial ensemble 

members, one encounters a fluctuation that increases the gas viscosity, that fluctuation 

will cause slightly more heating of the gas. In this slightly heated gas the viscosity 

will be slightly higher than on average, increasing the likelihood of further 

fluctuations that in turn increase the viscosity. This is a run-away process that 

prevents the decay of correlations required for the T-mixing condition. 
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6.4 FOR T-MIXING SYSTEMS THE NONEQUILIBRIUM STEADY 

STATE IS INDEPENDENT OF THE INITIAL EQUILIBRIUM 

DISTRIBUTION 

 

 We have already argued that for T-mixing systems the steady state properties 

must be independent of the initial distribution. In this section we give an explicit 

proof of this point. 

 The dissipation function defined in (6.3.3) is a functional of both the 

dynamics and the initial distribution. The exact transient Evans-Searles Fluctuation 

Theorem13,14 refers to this exact dissipation function. How does the influence of the 

nonequilibrium initial distribution disappear? We consider an initial distribution that 

is not the equilibrium distribution for the zero-field system but is some deviation from 

it: 

 

	
  
 
fg (Γ,0) =

exp[−βthH0 (Γ)− λg(Γ)]δ (Pth )δ (Kth (Γ)− Kβ ,th )
dΓ∫ exp[−βthH0 (Γ)− λg(Γ)]δ (Pth )δ (Kth (Γ)− Kβ ,th ) .

	
   (6.4.1) 

	
  

We assume the deviation function  g(Γ)  is even in the momenta, is nonsingular, real 

and integrable. The positive real parameter λ  is a simple scaling parameter that 

allows us to easily scale the magnitude of the deviation from the equilibrium 

distribution. The dissipation function is easily seen to be  

 

	
     Ωλ (Γ) = −βthJ(Γ)V iFe − λ !g(Γ) .	
   (6.4.2) 
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Substituting into the dissipation theorem gives, 

 

	
  
 
g(t) Fe ,λ = g(0) Fe ,λ − ds

0

t

∫ [βthJ(0)V iFe + λ !g(0)]g(s)] Fe ,λ 	
   (6.4.3) 

	
  

and recalling that g(t)  is even in the momenta we have 
 
!g(0) Fe ,λ = J(0) Fe ,λ = 0 . So 

if the system is T-mixing then at sufficiently long times the value of the left hand side 

becomes time independent which means that the part of the average dissipation 

function due specifically to the deviation function (6.4.3), is zero at long times: 

 

	
  
 
lim
t→∞
!g(t) Fe ,λ = 0 .	
   (6.4.4) 

	
  

 For T-mixing systems we can give a formal proof that at long times the 

dissipation becomes independent of the deviation function. We write the average 

dissipation for the deviated system as: 
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lim
t→∞

Ωλ (t) Fe ,λ = − lim
t→∞

βthJ(t)V iFe + λ !g(t) Fe ,λ

= − lim
t→∞

βthJ(t)V iFe Fe ,λ

= − lim
t→∞

βthJ(t)V iFee
−λg(0)

Fe ,λ=0

e−λg(0)
Fe ,λ=0

= − lim
t→∞

βthJ(t)V iFe Fe ,λ=0
e−λg(0)

Fe ,λ=0

e−λg(0)
Fe ,λ=0

= − lim
t→∞

βthJ(t)V iFe Fe ,λ=0
= lim

t→∞
Ωλ=0 (t) Fe ,λ=0

	
  	
   (6.4.5) 

 

In going from the first to the second line we use (6.4.5). Going from the third line to 

the fourth we use the fact that at long times the system becomes stationary and the T-

mixing transient system must also be weak T-mixing – see (5.3.3). (Note: T-mixing 

implies weak T-mixing but weak T-mixing does not imply T-mixing.)  

 An interesting example of a deviation function would be to choose it so that 

the initial distribution was just a delta function centred on almost any initial phase 

 Γ0 . One could also – at least in principle choose the deviation function so that the 

intitial distribution of phases corresponded (to arbitrary accuracy) to the steady state 

attractor traced out by a single phase space trajectory! This reduces the long time 

ensemble averages to simple time averages taken along a single exceedingly long 

trajectory. Equation (6.4.5) holds in each of these cases and in the latter case the 

results correspond to those obtained from a single dynamical system rather than an 

ensemble average of dynamical systems. 
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6.5 IN THE LINEAR RESPONSE REGIME, THE DISSIPATION IS 

MINIMAL WITH RESPECT TO VARIATIONS OF THE INITIAL 

DISTRIBUTION 

 

 In the linear response regime (where fluxes are linear in Fe,λ ), where the 

average dissipation function is quadratic in Fe,λ , for finite times we have 

 

 

lim
Fe ,λ→0,

ds
0

t

∫ Ωg (s) Fe ,λ = − ds
0

t

∫ βthVFe i lim
Fe→0,

J(s) Fe ,λ=0 + λ limλ→0,
!g(s) Fe=0,λ

⎡
⎣⎢

⎤
⎦⎥

> − lim
t→∞

ds
0

t

∫ βthVFe i lim
Fe→0,

J(s) Fe ,λ=0 =O(Fe
2 )

> 0, ∀t

	
  (6.5.1) 

	
  

It is easy to show that any cross terms 
 
λFe i J(0) !g(t) Fe=0,λ=0  

vanish by symmetry in 

the linear response regime and in any case are of higher orderO(Fe
2λ 2 ) .  The second 

line in this equation follows from applying the Second Law Inequality to the (weak) 

dissipation due solely to the deviation function: 
 
− lim

t→∞
ds

0

t

∫ lim
t→∞
!g(s) Fe=0,λ

⎡
⎣

⎤
⎦ > 0, ∀t . 

So in the linear response regime the average primary dissipation is less than any other 

dissipation due to variations in the initial distribution away from equilibrium. In the 

nonlinear regime it is not known whether the average primary dissipation is minimal. 

 Equation (6.5.1) shows that at sufficiently long times, in T-mixing, driven 

systems the dissipation always relaxes towards the average of the primary dissipation 
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function. If the driven system is T-mixing all other forms of dissipation diminish 

towards zero leaving only the primary dissipation in the limit of infinite time. 

 This proof that in the linear response regime the primary dissipation is 

minimal with respect to variations in the initial distribution function gives a proof for 

T-mixing systems, of Prigogine’s principle of minimum entropy production in the 

linear response regime close to equilibrium. He states15: “In the linear regime, the 

total entropy production in a systems subject to [a] flow of energy and matter, 

diS / dt = σ dV∫ , reaches a minimum value at the nonequilibrium stationary state. 

This is because the unconstrained forces adjust themselves to make their conjugate 

fluxes go to zero.” We have already noted that in the linear regime the average 

dissipation is equal to the so-called entropy production16. In our system there is no 

nett mass flow into or out of the unit cell. In our case all we have to do is to construct 

a second “force” Fe,2  that is capable of generating the flux  !g . This unconstrained 

force adjusts itself so that its conjugate flux namely  !g  averages to zero in the steady 

state. To find this “force” and its equations of motion is a trivial exercise. If the 

equations of motion take the same form as (6.3.1) but with coupling parameters 

C2,i ,D2,i  and a “force” F2,e  we see that we merely have to find the coupling 

parameters such that 
 
λ !g = F2,e i [pi mD2,i − FiC2,i ]

i=1

N

∑ , a trivial exercise.  
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6.6 SUM RULES FOR DISSIPATION IN STEADY STATES 

 

 Using (6.4.3) and the T-mixing property we have the following relaxation 

sum rule 

 

	
  

 

lim
t→∞
!g(t) Fe ,λ

= − ds
0

∞

∫ [βthJ(0)V iFe + λ !g(0)] !g(s)] Fe ,λ

=
− ds

0

∞

∫ [βthJ(0)V iFe + λ !g(0)] !g(s)e
−λg(0) ]

Fe ,λ=0

e−λg(0)
Fe ,λ=0

= 0

	
   (6.6.1) 

	
  	
  

This is analogous to the corresponding sum rule for the fluxes of nonconserved 

quantities in systems relaxing to equilibrium. In the present case the sum rule is for 

fluxes of nonconserved quantities relaxing to a steady state – the heat death equation 

(5.4.19). In the heat death case Fe = 0  and the first term on the right hand side of the 

first line of (6.6.1) is simply absent. So for nonequilibrium steady states in the long 

time, t, limit, instead of autocorrelation functions of fluxes of nonconserved quantities 

integrating to zero, they behave as, 

 
λ ds !g(0) !g(s) Fe ,λ

lim(t→∞)⎯ →⎯⎯⎯
0

t

∫ − ds
0

t

∫ βthJ(0)V iFe !g(s) Fe ,λ
.   

 The fact that in regard to forming averages of smooth phase functions, T-

mixing systems forget about their initial distributions is completely consistent with 

our earlier proof that the steady state is ergodic and consists of a single connected 

phase space domain - at least as can be ascertained from averages of suitably smooth 
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phase functions. We eventually arrive arbitrarily close to this same domain even if the 

initial t = 0 , distribution differs from the equilibrium distribution for the zero field 

system. Indeed if we start a single trajectory at time zero in the long time limit the 

steady state attractor traced out by this single trajectory must explore essentially the 

same attractor as that generated at some arbitrarily long time, from an arbitrary initial 

distribution of states.  

 Of course if we examine phase space at extreme resolution (say with a very 

singular phase function (for example  ln[ f (Γ;t)]  ), the deterministic phase space never 

“forgets” its original initial conditions; these can always be retrieved by applying a 

time reversal map to return to the original distribution of states. However when 

“observed” by computing averages of smooth phase functions for thermophysical 

properties like pressure, stress or energy, these very fine structures in phase space 

cannot be resolved and the knowledge of initial conditions is effectively lost. The 

measurement of thermophysical properties is the only way we can characterize these 

macroscopic states. The measurement of the fine-grained phase space density is 

simply not possible – at least at the resolution required to generate the initial 

distribution after a long relaxation to the steady state. 

 Another way to describe these steady state strange attractors is that starting 

from different initial phase space points we may generate slightly different steady 

state attractors. These different attractors must, in T-mixing systems, be so tightly 

interwoven that when we measure steady state averages we cannot observe 

differences in the long time averages. This is what is implied by the T-mixing 

condition and equation (6.4.5) for example. This happens despite the fact that these 

attractors are of lower dimension than the ostensible phase space because there is an 
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enormous amount of phase space for them to fill differently, leading to different 

average values even for smooth phase functions. 

 For all temperatures, densities and external fields the average long time 

dissipation is identical to that generated from the equilibrium distribution for the 

system. This means that the nonlinear transport coefficient, L(Fe )  defined in terms of 

the steady state dissipation 

 

	
    L(Fe;λ) ≡ limt→∞

Ωλ (t) λ

βthVFe
2 = lim

t→∞

Ωλ=0 (t) λ=0

βthVFe
2 = L(Fe;λ = 0) ,	
   (6.6.2) 

	
  

is independent of whether the initial system was in its equilibrium distribution or any 

deviation from it – so long as the kinetic temperature of the reservoir particles has a 

fixed value so that the temperature of the underlying equilibrium state is fixed.   

 Equation (6.6.2) is in accord with our knowledge of the thermosphysical 

properties of fluids etc. For example the viscosity of argon is history independent. It 

only depends of the temperature, density and strain rate. The initial preparation of the 

system is irrelevant to the viscous properties of the system in the steady state inside 

the viscometer. In T-mixing systems the nonlinear and linear transport coefficients are 

in fact state functions. 
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6.7 POSITIVITY OF NONLINEAR TRANSPORT COEFFICIENTS 

 

 In chapter 4 we gave a derivation of the Dissipation Theorem for an 

exceedingly general set of time reversible equations of motion and for quite general 

initial distributions f (Γ;0) . If one substitutes Ω  for B in equation (6.3.5) and then 

combines the resulting equation with the strong form of the strong Second Law 

Inequality14, one knows that time integrals of ensemble averages of the dissipation 

must be positive: ds
0

t

∫ Ω(s) > 0,∀t . Since at long times for T-mixing systems the 

average dissipation is time independent one can only conclude that in nonequilibrium 

steady states the ensemble average dissipation must be positive. If this were not the 

case the Second Law Inequality would be violated for sufficiently large times. 

Therefore the dissipation in driven T-mixing systems, 

 

lim
t→∞

Ω(t) Fe , f (Γ;0)
= ds

0

∞

∫ Ω(0)Ω(s) Fe , f (Γ;0)
> 0, ∀ Fe, f (Γ;0). 	
   (6.7.1) 

  

 So, for driven systems not only does the dissipation autocorrelation function 

start with a positive value ( Ω(0)2
Fe , f (Γ;0)

> 0,∀Fe, f (Γ;0)  ), but for all normalizable 

initial distributions and for any well defined dynamics with an arbitrarily strong 

external field (if any) any negative tails in the ensemble averaged dissipation function 

must disappear before the system enters the necessarily positive dissipation of the 

final steady state. 

 If we consider a driven isokinetic system we observe from (6.3.5) that: 
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− lim
t→∞

J(t) Fe ,c
= − J(0) c + βthV ds J(0)J(s)

0

∞

∫ Fe ,c
Fe

= βthV ds J(0)J(s)
0

∞

∫ Fe ,c
Fe

≡ L(Fe )Fe > 0,∀Fe .

	
   (6.7.2) 

	
  

We have assumed the dissipative flux and force are scalars and we have used the fact 

that βth ≡ 1/ kBTth  where Tth  is the equilibrium thermodynamic temperature that the 

system will relax to if the driving force is set to zero and the system is allowed to 

relax to equilibrium.  We have also used the fact that for driven systems J(0) c = 0 .  

 The T-mixing property guarantees that the t→∞  limit is finite and therefore 

so too is the nonlinear transport coefficient at the specified value of the driving field, 

L(Fe ) . The T-mixing condition further guarantees that the nonequilibrium steady 

state is ergodic over the specified phase space domain. 

 The Second Law Inequality means that the conventionally defined average 

dissipative flux will be negative when the dissipative field is positive.  If we consider 

planar Couette flow as an example, the following mapping applies: 

 
Fe →

∂ux
∂y = γ ;J→ Pxy; L(Fe )→η( γ )  where the variables are in turn: the strain rate 

 γ ; the xy-element of the pressure tensor Pxy  and lastly the nonlinear strain rate 

dependent shear viscosity  η( γ )  defined in the nonlinear constitutive relation for 

shear viscosity. Equation (6.7.2) gives a nonlinear constitutive relation between the 

dissipative flux and the dissipative field for a finite, driven, thermostatted system that 

is T-mixing. 
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 The Second Law Inequality guarantees that the nonlinear transport 

coefficients,  L(Fe ),η( γ )  appearing in the nonlinear constitutive relation for finite 

sized, T-mixing systems is finite and must be positive: 

 

	
   ∞ > L(Fe ) > 0, ∀Fe .	
   (6.7.3) 

	
  

If we look again at (6.7.2) we see that the Second Law Inequality implies that 

ds
0

t

∫ J(s) Fe , fc (Γ ,0)
< 0,∀t .  However the approach to the steady state may not be 

monotonic. The ensemble averaged instantaneous current may be positive at 

intermediate times.  In fact in the nonlinear regime, this is a common situation. 
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6.8 LINEAR CONSTITUTIVE RELATIONS FOR T-MIXING 

CANONICAL SYSTEMS 
 
 Each of these results also includes the linear response regime as a special 

case in the limit of weak fields.  

 

	
  

lim
Fe→0

lim
t→∞

−∂ J(t) Fe ,c

∂Fe

= lim
Fe→0

βthV ds J(0) ∂J(s)
∂Fe0

∞

∫
Fe ,c

Fe + βthV ds J(0)J(s)
0

∞

∫ Fe=0,c

= lim
Fe→0

βthV ds J(0)J '(s)
0

∞

∫ Fe ,c
Fe + βthV ds J(0)J(s)

0

∞

∫ Fe=0,c

= βthV ds J(0)J(s)
0

∞

∫ Fe=0,c

≡ L(Fe = 0) > 0

	
   (6.8.1) 

	
  

In equation (6.8.1) there are two places where the field dependence is manifest. One is 

in the explicit factor, Fe . The second place is in the implicit time dependence of J(s) . 

In going from the first to the second line of (6.8.1) we expect that if J(s)  is a smooth 

function of time, phase  Γ  and Fe ,  J '(Γ(s)) ≡ ∂J(Γ(s)) / ∂Fe  will also be smooth. We 

assume the equations of motion do not contain singularities. We do not cover the case 

of hard particles or even systems with a piecewise continuous potential. We note that 

 J '(Γ(0)) = ∂J(Γ(0)) / ∂Fe = 0 , so that it takes time for the nonlinearities to “grow” 

into the response. 
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 The proof of equation (6.8.1) gives a proof that finite systems that are: 

thermostatted, driven, satisfy AIΓ , with smooth intermolecular forces and are T-

mixing, have finite linear constitutive relations in the weak field limit.  Further, the 

transport coefficient appearing in this linear constitutive relation is positive.  For 

electrical conductivity we therefore have subject to the conditions above, a proof of 

Ohms “Law” in the limit of weak fields or using the SLLOD equations for shear flow, 

a proof of Newton’s constitutive relation for weak shear flow – at least as they apply 

to finite systems. There is nothing in the proof given above to prevent the possible 

divergence of the extrapolated linear transport coefficient as the system size is 

increased. 
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6.9 GAUSSIAN STATISTICS FOR T-MIXING NESS 

 
 In 2000, we showed17 that by combining the asymptotic steady state ESFT 

(proved in the next section) with the Central Limit Theorem, you could prove Green-

Kubo relations in driven systems, for transport coefficients in the weak field limit.  

That derivation required a careful double limit ( t→∞,Fe → 0 ) that could not be 

extended to higher field strengths.  It also required the assumption that for long 

averaging times the time averaged dissipative flux satisfies the conditions for the 

Central Limit Theorem to be valid. The Dissipation Theorem8 obviates this discussion 

and shows how both the nonlinear and the linear response can be obtained directly 

and exactly in terms of integrals of time correlation functions involving the 

dissipation function directly.  

 However if the system is T-mixing (or mixing) then for sufficiently long 

averaging times the time averaged dissipative flux must satisfy the Central Limit 

Theorem with Gaussian statistics close to the mean of the distribution. As we will see 

in the next section, this fact is essential in order to prove observability of the 

asymptotic steady state fluctuation relation. 

 For driven systems, the dissipation function is quite simply related to the 

dissipative flux and the dissipative force. The Green-Kubo equilibrium time 

correlation function involves fluctuations in the dissipative flux. This flux is not 

identically zero at equilibrium whereas the dissipation function is. For driven systems 

satisfying AI Γ , the dissipative force and not the flux is zero at equilibrium. 
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6.10 THE NONEQUILIBRIUM STEADY STATE FLUCTUATION 

RELATION 

 We now consider fluctuation relations for the dissipation in a nonequilibrium 

steady state – or at least as we approach nonequilibrium steady states. We have 

already seen (§6.4) that if the initial distribution is not the equilibrium distribution for 

the zero field dynamics, the influence of the deviation function disappears in time 

(6.4.5). This means by definition, that any steady state fluctuation relation can only 

refer to the primary dissipation function for the system. 

 In the first instance we treat the simple case where there is no serial 

correlation in the time series data for the instantaneous dissipation. From §3.5, we 

may approach the steady state by asking what is the probability that the covariant 

dissipation integrated for a time τ , but starting not at time zero but rather at time, t, 

equals a value A compared to –A. As t becomes ever larger the time integrated 

dissipation approaches that of a true nonequilibrium steady state. So using (3.5.4) and 

(3.6.4) we can write down the following exact Evans-Searles transient fluctuation 

relation: 

 

	
  

p(Ωt ,t+τ = A)
p(Ωt ,t+τ = −A)

= exp(−Ω0,2t+τ ) Ωt ,t+τ =Aτ

−1

= exp(Aτ ) exp(−Ω0,t+τ − Ωt+τ ,2t+τ ) Ωt ,t+τ =Aτ

−1

	
  	
   (6.10.1) 

	
  

If the time series data for Ω(t)  has no serial correlation we can see that the condition 

for the ensemble average has no influence on the time integrals inside the ensemble 



 37 

average on the second line of (6.10.1) and so in this case we obtain the following 

exact relation 

 

	
  

p(Ωt ,t+τ = A)
p(Ωt ,t+τ = −A)

= exp(Aτ ) exp(−Ω0,t+τ − Ωt+τ ,2t+τ )
−1

= exp(Aτ ) exp(−Ω0,t+τ )
−1
exp(−Ωt+τ ,2t+τ )

−1

= exp(Aτ ) exp(−Ωt+τ ,2t+τ )
−1

	
  	
   (6.10.2) 

 

where we have used the nonequilibrium partition identity (3.3.1), to go from line 2 to 

line 3. If we break up the integral in the nonequilibrium partition identity (3.3.1) into 

two parts we see that 

 

	
  

exp(−Ω0,a+b ) = exp(−Ω0,a ) exp(−Ωa,b ) = 1

= 1 exp(−Ωa,b ) = 1

⇒ exp(−Ωa,b ) = 1

	
  	
   (6.10.3) 

 

where again we have assumed there is no serial correlation in the time series data. 

 If we apply this result to equation (6.10.2) we arrive at an exact steady state 

fluctuation relation for systems with no serial correlation in the time series data for 

Ω(t) : 

 

	
   lim
t→∞

p(Ωt ,t+τ = A)
p(Ωt ,t+τ = −A)

= exp(Aτ ) 	
  	
   (6.10.4) 
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Now of course in any real dynamical system there must be serial correlation in the 

time series data so (6.10.4) cannot be exact for real dynamical systems. When the 

serial correlation is allowed for (6.10.4) becomes an asymptotic result that is only 

valid in the limit τ /τM →∞  where τM  is the Maxwell time describing the 

correlation time of the dissipation function: 

 

	
  

lim
τ /τM→∞

lim
t→∞

p(Ωt ,t+τ = A)
p(Ωt ,t+τ = −A)

= lim
τ /τM→∞

p(Ωss,τ = A)
p(Ωss,τ = −A)

= exp(Aτ )
	
  	
   (6.10.5) 

 

where the subscript “ss” denotes that the integral over τ  should only be done when, 

to your desired level of accuracy, the system has relaxed to its unique nonequilibrium 

steady state and the dissipation function is the primary dissipation function for the 

dynamics - independent of the initial distribution of states. We will now derive this 

result. 

 Consider (6.10.1) again. We make the worst possible assumption for 

correlation. We assume that for a Maxwell time before t  and after t +τ  the average 

dissipation is equal to its mean value over the interval t,t +τ  namely A . This worst 

case analysis assumes no decay of correlations until after a Maxwell time. Thus 

(6.10.1) becomes 
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p(Ωt ,t+τ = A)
p(Ωt ,t+τ = −A)

= exp(−Ω0,2t+τ ) Ωt ,t+τ =Aτ

−1

= exp(Aτ ) exp(−Ω0,t+τ −τM
−Ωt+τ+τM ,2t+τ

)
Ωt ,t+τ =Aτ

−1
exp(−2AτM

= exp(Aτ ) exp(−Ω0,t+τ −τM
−Ωt+τ+τM ,2t+τ

)
−1
exp(−2AτM

= exp(Aτ − 2AτM )

 (6.10.6) 

 

Thus in this worst case analysis 

 

	
  

lim
τ /τM→∞

lim
t→∞

1
τ
ln

p(Ωt ,t+τ = A)
p(Ωt ,t+τ = −A)

= A −O AτM

τ
⎛
⎝⎜

⎞
⎠⎟

= A =O(τ −1/2 )
	
  	
   (6.10.7) 

	
  
As we have seen in §6.9, for T-mixing steady states the distribution of average values 

of dissipation will become Gaussian about the mean. Since the average dissipation is 

positive the value that is most difficult to observe is minus one times the mean value 

of the dissipation. Using Gaussian statistics we see that, −A =O(τ −1/2 ) . Taking more 

and more samples enables us to observe fluctuations further and further from the 

mean value for Ω   - which is positive.  

Definition 

So the asymptotic steady state fluctuation relation (6.10.7) is observable because the 

error term O(AτM /τ ) =O(τM /τ
3/2 )  vanishes faster than the (negative) fluctuations 

themselves (=O(1 /τ 1/2 ) ). 
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 For T-mixing systems the steady state is physically ergodic and independent 

of the initial distribution of states. If we take the initial distribution to be a delta 

function at a particular point in phase space our asymptotic steady state fluctuation 

relation applies to late time averages along a single, phase space trajectory. In this 

case (6.10.7) is an asymptotic result for an individual dynamical system over 

arbitrarily long times. 
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6.11  GALLAVOTTI-COHEN STEADY STATE FLUCTUATION 

THEOREM 

 
 An alternative Steady State Fluctuation Relation to (6.10.5), has been 

proposed by Gallavotti, Cohen and co-workers [79-81].  The Gallavotti-Cohen 

Fluctuation Theorem has been proven for Anosov and so-called Axiom A, systems 

[82] but the resulting relationship was anticipated to apply to a wider range of 

systems.  

 Anosov systems are hyperbolic everywhere in the specified phase space 

domain. This is a rather special type of dynamics. For example Anosov systems have 

equal numbers of positive and negative Lyapunov exponents. 

 The Gallavotti-CohenFR can be written: 

 

 lim
t→∞

1
t
ln p[Λt = B]

p[Λt = −B]
⎡

⎣
⎢

⎤

⎦
⎥ = −B   for B ≤ B*  (6.11.1) 

 

where 
  
Λ ≡ ∂

∂Γi !Γ  is the phase space expansion rate, and B*  is some bound 

(generally unknown) [83]. Equation (6.11.1) refers to results observed along a single, 

exceedingly long, phase space trajectory.   

 Equation (6.11.1) has as we have said, be proven for Anosov systems but 

Gallavotti and Cohen proposed the equation may be valid for sufficiently chaotic non-

Anosov systems. This proposal is termed the Chaotic Hypothesis. At the present time 

there is no test independent of the Gallavotti-CohenFR, to test whether the Chaotic 

Hypothesis will apply to a given non-Anosov system. Presumably a precondition for 

the chaotic hypothesis to hold is that the dynamical system does in fact relax to a 

steady state because (6.1.1) would make no sense for non-steady state systems (e.g. 

adiabatic systems that heat up without bound). 

 Gallavotti has also proposed a possible modification to (6.11.1) for systems 

with an unbalanced number of positive and negative exponents in non-Anosov 

systems.  However, numerical tests seem to show no evidence of a discontinuity in 

(6.11.1) when the number of positive and negative exponents change (e.g. by 

increasing the dissipative field).  Such a change would be necessarily discontinuous. 
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 For isoenergetic systems Λ = −Ω , and therefore the relations (6.10.5) and 

(6.11.1) become identical for ergodic, isoenergetic, steady states, implying for this 

circumstance that B* = ∞ . 

 Application of the Gallavotti-Cohen Fluctuation Relation to systems that are 

not isoenergetic has recently been discussed [81,84], and it has found that there are 

serious limitations to its practical utility. For instance for systems driven by a 

dissipative field Fe , and satisfying AIΓ the bounds in (6.11.1) go to zero as 

equilibrium is approached: B* =O(Fe
2 )→ 0  as Fe → 0 .  This means that the range of 

applicability of the GCFR shrinks to zero as equilibrium is approached.  In fact it is 

easy to see why this must be the case. At equilibrium, the GCFR for thermostatted 

systems would predict an asymmetry in the probability of time-averaged values of the 

phase space expansion factor. This is obviously not possible!  By contrast, at 

equilibrium the Evans Searles FR’s simply state that fluctuations in the time 

integrated dissipation is symmetric about zero – see §6.10. 

 Perhaps even more difficult is the fact that for thermostatted systems, the 

time required for convergence of the Gallavotti-CohenFR diverges to infinity as 

O(Fe
−2 )  (i.e. the asymptotic limit in (6.11.1) should be written as τ / Fe

2 →∞ ).  Since 

much of the interest in fluctuation relations arises from the fact that they are exact 

arbitrarily far from equilibrium, the bound on the range of fluctuations means that the 

Gallavotti-CohenFR is of limited use in large deviation theory. On the other hand 

close to equilibrium the shrinking bounds on the range of the argument and the 

divergence of the convergence time also lead to problems.  

 One can easily see why this divergence of convergence times occurs close to 

equilibrium. The phase space expansion factor for thermostatted systems close to 

equilibrium contains a sum of two terms. One is the dissipation function  (times -1) 

but the other component is just (to leading order close to equilibrium) the equilibrium 

fluctuations in the phase space expansion factor. The equilibrium fluctuations become 

independent of the external field close to equilibrium, and they are of course 

symmetric about zero and therefore cannot satisfy any fluctuation relation. In the long 

time limit in steady states of thermostatted systems: lim
t→∞
(Λ t +Ω t ) = 0  but as the field 

becomes ever smaller the relative magnitude of the symmetric equilibrium 

fluctuations becomes ever larger, swamping the dissipation. Thus as the field becomes 
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smaller it takes longer and longer for the average Λt  to become equal to −Ωt . We 

will discuss an example of the convergence difficulties for the Gallavotti-CohenFR in 

§7.4 – especially contrasting (7.4.19,20) and (7.4.21). 
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6.12  SUMMARY 

 

 One often sees references in the literature to the supposition that in 

nonequilibrium steady states the ”entropy production” (i.e. average dissipation) is a 

maximum (or sometimes a minimum!) subject to the known constraints. The fact that 

when a dissipative field is suddenly applied to an equilibrium system the dissipation 

increases from zero means that in a steady state the dissipation can hardly be an 

absolute minimum. The fact that the dissipation very frequently overshoots its steady 

state value means that in general the steady state dissipation cannot be a maximum 

either. In the present chapter we have shown that in the linear response regime the 

primary dissipation is minimal with respect to all possible variations of the initial 

distribution away from the natural equilibrium distribution.  

 There is a way of rederiving19 the Dissipation Theorem for driven systems as 

an extremum principle but the final result is identical to the Dissipation Theorem8 and 

it involves an infinite set of constraints. The choice of which constraints should be 

used in these derivations is best made after you already know the correct answer 

because a priori there seems to be no criteria for selecting these constraints. 

 One of the interesting things our work has revealed is that in T-mixing 

systems the nonequilibrium steady state is physically ergodic and independent of the 

initial distribution. This independence with respect to the initial distribution means 

that there is only one steady state fluctuation relation for a given dynamical system. 

 The positivity of transport coefficients is a direct result of the fact that the 

time integral of the average dissipation is positive.  It also means that on average, 

work is converted into heat rather than the reverse. For a driven T-mixing system, that 

satisfies AI Γ  and is isokinetic we have 
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βth
H0 (t) = −βthVJ(t)Fe − 2βthKthα (t)

= −βthVJ(t)Fe − (3N − 4)α (t) .

	
   (6.12.1) 

	
  

If we take long time averages for a steady state, 

 

	
  

 

lim
t→∞
!H0,t = limt→∞

[−βth JtVFe − (3N − 4)α t ]

= βthVL(Fe )Fe
2 − (3N − 4)lim

t→∞
α t

= 0

	
   (6.12.2) 

	
  

where ...t  denotes a time average of duration t. We note that it is the stationary 

property of the T-mixing steady state that implies the long time average rate of change 

of the energy goes to zero. Since βth ,L(Fe ),V ,Fe
2  are each strictly positive, so too 

must the long time average of the thermostat multiplier. This means that when 

averaged over long times in a nonequilibrium steady state, heat must, on average, be 

removed from the system by the thermostat.  Thus the work performed on the system 

by the dissipative field, −JVFe , is on average, positive and by (6.12.2) this work is 

dissipated into the form of heat and then removed from the system by the (physically 

remote) thermostat.  This gives a mathematical proof of one of the postulated 

statements of the Second Law of Thermodynamics given in William Thomson’s 1852 

paper18 On the universal Tendency in Nature to the Dissipation of Mechanical Energy 
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as follows “Although mechanical energy is indestructible, there is a universal 

tendency to its dissipation, which produces throughout the system a gradual 

augmentation and diffusion of heat, cessation of motion and exhaustion of the 

potential energy of the material Universe”. 
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A6 APPENDIX 

 Here we consider a system subject to a cyclic change in temperature to 

demonstrate the behaviour and relationship between the dissipation, and the 

thermodynamic and Gibbs entropies.  Consider a thermostatted system at equilibrium 

at T1 , which is monitored for a period τ1 , then is decreased in temperature to T2  over 

a period τ 2 , maintained that temperature for a period τ 3 , then warmed back to 

T1  over a period τ 2 , and maintained at that temperature for a period τ1  (see figure 1). 

 In order to determine the dissipation function, we need to look at a time-

symmetric protocol.  For simplicity, we make the changes in T  such that β  varies 

linearly in time.  To ensure ergodic consistency, we consider a Nosé-Hoover 

thermostatted system.  This example can then be used to consider thermodynamically 

reversible or irreversible changes. 

 

 

Figure 1.  Schematic diagram of the protocol used for change of temperature in the 

example considered. 

The equations of motion are: 

τ
1

 

t 

β
2

 

β
1

 

     

β 

τ
2

 τ
3

 τ
2

 τ
1

 

τ
max

 

 
β =
(β2 −β1)
τ 2  

β =
(β1 −β2 )
τ 2
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qi = pi /m
pi = Fi −αpi

α = 1
τ th
2

2pi ⋅pi
3NkT (t)m

−1⎛
⎝⎜

⎞
⎠⎟

 (A6.1) 

 

and the initial distribution function is: 

 

 f (Γ,α ) = e
−β1E (Γ )− 32Nτ th

2α 2

Z1
 (A6.2) 

 

This becomes a cyclic process if the time period τ1  becomes long enough that, for 

averages of smooth phase functions, the system approaches equilibrium.  We will 

consider both possibilities here (cyclic and not). 

 

The dissipation function for this process is [31]: 

 Ωτmax
= β1E(τmax )− β1E(0)+ 3

2 Nτ th
2 (α (τmax )

2 −α (0)2 )+ 3N α (t)dt
0

τmax∫
 (A.3) 

Noting, 

 
 

d
dt

3
2 Nτ th

2α (t)2⎡⎣ ⎤⎦ = 3Nτ th
2α (t) α (t) = 2K(t)α (t)

kT (t)
− 3Nα (t)  (A6.4) 

so,  

 3
2 Nτ th

2 (α (τmax )
2 −α (0)2 ) = 2K(t)α (t)

kBT (t)
− 3Nα (t)

⎛
⎝⎜

⎞
⎠⎟0

τmax∫ dt  (A6.5) 

and substituting into (A.3) gives, 

 Ωτmax
= β1E(τmax )− β1E(0)+

2K(t)α (t)
kBT (t)

dt
0

τmax∫  (A6.6) 
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Furthermore,  E(t) = −2K(t)α (t) = Q(t)  where  Q(t) is the rate at which heat is 

transferred to the system, since no work is being done on the system. So, 

 
 
Ωτmax

= β1E(τmax )− β1E(0)−
Q(t)

kBT (t)
dt

0

τmax∫  (A6.7) 

 

Now consider some special cases: 

(i) When lim(τ 2 →∞)  we have a reversible process.  Then, 

 

Q(t)
kBT (t)

dt
τ1

τ1+τ 2∫ = −
Q(t)

kBT (t)
dt

τ1+τ 2+τ 3

τ1+2τ 2+τ 3∫  and E(τmax ) = E(0)  so from (A.7),  

 
 
Ωτmax

= −
Q(t)

kBT (t)
dt

0

τmax∫ = 0 . (A6.8) 

 

(ii) Now consider the irreversible process with finite τ 2  but with lim(τ1→∞) . 

With respect to averages of smooth phase functions the system will be arbitrarily 

close to equilibrium at τmax , so lim
τmax→∞

E(τmax ) = E(0) .  Then, from (A.7): 

 
 
Ωτmax

= −
Q(t)

kBT (t)
dt

0

τmax∫ = −1/ kB SG (t)dt0

τmax∫  (A6.9) 

and from the Second Law Inequality [19], Ωτmax
≥ 0 , so 

 
 
Ωτmax

= −
Q(t)

kBT (t)
dt

0

τmax∫ = −1/ kB SG (t)dt0

τmax∫ ≥ 0  (A6.10) 

 

If the process is irreversible, the inequality applies.  The equality will apply for the 

reversible case.  So this says that for the irreversible cycle, the time integral of the 

average dissipation function (multiplied by kB ), the change in the Gibbs entropy and 

the integral of  
Q /T , where the temperature is the target temperature of the Nosé-
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Hoover thermostat, are all equal and will be positive, independent of the Nosé-Hoover 

time constant τ th .  

 The target temperature will in general be different from the instantaneous 

kinetic temperature and furthermore those differences will vary with respect to the 

time constant, τ th . The same equation exactly can be derived using an isokinetic 

rather than Nosé-Hoover thermostat. These facts show that the temperature T (t) , in 

the equation (A.10) is in fact the equilibrium thermodynamic temperature of the 

underlying equilibrium system at time t. This temperature can be discovered by 

halting the execution of the protocol at time t, and allowing the entire system to relax 

to equilibrium. From the equilibrium relaxation theorems, for isokinetic dynamics this 

temperature is the instantaneous kinetic temperature at time t. For the Nosé-Hoover 

thermostat it is the Nosé-Hoover target temperature at time t, regardless of the value 

of the feedback time constant. 

Equation (A.10) also shows the lack of utility of the Gibbs entropy in this work. 

Although its time derivative is:  
Q(t) T (t) , the difference in the Gibbs entropy of 

the initial and final states is not zero. This is in spite of the fact that an unlimited 

amount of time is allowed for relaxation towards the final state! For any relaxation 

time no matter how large, the final distribution at time τmax , is not precisely an 

equilibrium distribution and the Gibbs entropy detects these minute differences and 

SG (0) > SG (τmax ),∀τmax . If it did relax to true equilibrium we could never retrieve the 

initial distribution of states by applying a time reversal operator. For any τmax  no 

matter how large, the initial distribution of states can always be retrieved using a time 

reversal operator. True equilibrium distributions are invariant in time with or without 

the application of time reversal operators.  
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